Varadhan estimates in semi-group theory: upper bound

نویسنده

  • REMI LEANDRE
چکیده

We translate in semi-group theory our proof of Varadhan estimates for subelliptic Laplacians which was using the theory of large deviations of Wentzel-Freidlin and the Malliavin Calculus of Bismut type. Key–Words: Large deviations. Subelliptic estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Varadhan estimates without probability: upper bound

We translate in semi-group theory our proof of Varadhan estimates for subelliptic Laplacians which was using the theory of large deviations of Wentzel-Freidlin and the Malliavin Calculus of Bismut type. Key–Words: Large deviations. Subelliptic estimates.

متن کامل

Wentzel-Freidlin Estimates for Jump Processes in Semi-group Theory: Upper-bound

In the present paper we translate in semi-group theory the proof of Wentzel-Freidlin of large deviation estimates for jump processes whose jumps are smaller and smaller and whose number is increasing: we study the lower bound. M.S.C. 2000: 35K05, 47G10, 60F10, 60J75

متن کامل

بهبود کران بالا روی بعد همدیس میدان‌های اولیه

Modular invarinat, constraints the spectrum of the theory. Using the medum temprature expansion, for first and third order of derivative, a universal upper bound on the lowest primary field has been obtained in recent researches.  In this paper, we will improve the upper bound on the scaling dimension of the lowest primary field. We use by the medium temprature expansion for an arbitrary orders...

متن کامل

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

Semi-parametric efficiency bounds for regression models under choice-based sampling

We extend the Bickel–Klaassen–Ritov–Wellner theory of semi-parametric efficiency bounds to the case of sampling from several populations, and discuss the form of the efficient score and efficient influence function in this situation. The theory is applied to obtain an information bound for estimates of parameters in general regression models under case-control sampling. The variances of the sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008